Zirconia in Dentistry:
Part 2. Evidence-based
Clinical Breakthrough

Spiridon Oumvertos Koutayas, Dr Med Dent, DDS, CDT
Senior Lecturer, Department of Prosthodontics, School of Dentistry,
Albert-Ludwigs University, Freiburg, Germany
Private practice, Corfu, Greece

Thaleia Vagkopoulou, DDS
Postgraduate Student, Department of Prosthodontics, School of Dentistry,
Albert-Ludwigs University, Freiburg, Germany

Stavros Pelekanos, Dr med dent, DDS
Assistant Professor, Department of Prosthodontics, School of Dentistry,
National and Kapodistrian University, Athens, Greece

Petros Koidis, DDS, MSc, PhD
Professor and Chairman, Department of Fixed Prosthesis and Implant Prosthodontics,
School of Dentistry, Aristotle University, Thessaloniki, Greece

Jörg Rudolf Strub, Dr Med Dent, DDS, PhD
Professor and Chairman, Department of Prosthodontics, School of Dentistry,
Albert-Ludwigs University, Freiburg, Germany

Correspondence to: Dr Spiros Koutayas
Zafiropoulou Str. 29, 49100, Corfu, Greece; Tel: +30-26610-45747; Fax: +30-26610-82228; E-mail: koutayas@otenet.gr
Abstract

An ideal all-ceramic restoration that conforms well and demonstrates enhanced biocompatibility, strength, fit, and esthetics has always been desirable in clinical dentistry. However, the inherent brittleness, low flexural strength, and fracture toughness of conventional glass and alumina ceramics have been the main obstacles for extensive use. The recent introduction of zirconia-based ceramics as a restorative dental material has generated considerable interest in the dental community, which has been expressed with extensive industrial, clinical, and research activity. Contemporary zirconia powder technology contributes to the fabrication of new biocompatible all-ceramic restorations with improved physical properties for a wide range of promising clinical applications. Especially with the development of computer-aided design (CAD)/computer-aided manufacturing (CAM) systems, high-strength zirconia frameworks can be viable for the fabrication of full and partial coverage crowns, fixed partial dentures, veneers, posts and/or cores, primary double crowns, implant abutments, and implants. Data from laboratory and clinical studies are promising regarding their performance and survival. However, clinical data are considered insufficient and the identified premature complications should guide future research. In addition, different zirconia-based dental auxiliary components (ie, cutting burs and surgical drills, extra-coronal attachments and orthodontic brackets) can also be technologically feasible. This review aims to present and discuss zirconia manufacturing methods and their potential for successful clinical application in dentistry. (Eur J Esthet Dent 2009;4:348–380.)
Introduction

The growing belief that metal-free dentistry will alter the traditional restorative spectrum had always been stymied by the inherent brittle nature of dental ceramics. Therefore, researchers and manufacturers have developed advanced formulas to prevent crack propagation mainly by using yttrium-tetragonal zirconia polycrystals (Y-TZP), commonly known as zirconia.¹⁻³ The advent of zirconia ceramics, in conjunction with computer technology, has led both dental science and industry to experience their own “dream.” The interpretation of this specific “zirconia dream” could be defined as “the general clinical application of a highly biocompatible zirconia ceramic material that is resistant on a long-term basis to all thermal, chemical, and mechanical impacts of the oral environment in a wide range of dental restorations.” Over the last decade, the dental community has been a witness to an industrial “big bang” regarding zirconia processing for different applications in dentistry.⁴⁻⁵ The latter developments were characterized by a global promotion that created great expectations, but on the other hand, the new technology seems to need a certain amount of time to be fully adapted by dentists and dental technicians. The dental profession is aware of the limited clinical data regarding strength resistance under fatigue, bonding effectiveness, color performance, and longevity of the zirconia-based restorations.⁶ Nevertheless, dreaming may let us glimpse the future, or even better according to the “expectation fulfillment theory,”¹⁷ it could realistically complete patterns of emotional expectation that encourage research and clinical trials concerning this evolving biomaterial.

Nowadays, zirconia technology has fallen into step with computer-aided design/computer-aided manufacturing (CAD/CAM) systems that promise to transform everyday dentistry.⁸ The three-dimensional design of Y-TZP frameworks requires a computer and special software (CAD) provided by the manufacturer. After a scanning procedure of the designed work, data are transferred to a computerized manufacturing unit (CAM) that performs a preset production of the zirconia framework.⁹ Zirconia-based frameworks are produced either by milling out from a solid block (subtractive technique),¹⁰ predominantly for Y-TZP ceramics, or by using electrophoretic deposition (additive technique) particularly for cerium-tetragonal polycrystal (Ce-TZP) ceramics.¹¹ Milling of zirconia blocks can be performed in the partially¹² or fully sintered stage¹³ using appropriate cutting diamonds under water coolant if needed. The majority of CAD/CAM systems utilize partially sintered Y-TZP ceramics, where the milling procedure is performed with the use of carbide burs in a dry environment. Throughout the designing stage, the size of a prospective milled, partially sintered framework is analogically enlarged approximately 20% and 25% in comparison with the original dimensions, due to the shrinkage occurring after the final sintering.¹³ Moreover, milling of fully sintered or hot isostatically pressed (HIP) zirconia blocks is time-consuming due to the increased hardness of the material, but it does not exhibit any dimensional changes (ie, shrinkage). Processing of partially sintered Y-TZP ceramics at room temperature presents limited surface or in-depth damage (ie, voids, flaws, cracks),¹⁴ in contrast with hard machining of fully sintered (or HIP) that might induce microcracks.¹⁵ Nevertheless, sur-
Table 1 Current CAD/CAM systems for Y-TZP zirconia processing (in alphabetical order).

<table>
<thead>
<tr>
<th>System</th>
<th>Company</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cad.esthetics®</td>
<td>Cad.esthetics (Skelleftea, SE)</td>
<td>http://www.cadesthetics.com</td>
</tr>
<tr>
<td>Cynovad Neo™</td>
<td>Cynovad (Saint-laurent, CD)</td>
<td>http://www.cynovad.com</td>
</tr>
<tr>
<td>CentraDent</td>
<td>CentraDent (Haarlem, NL)</td>
<td>http://www.centradent.nl</td>
</tr>
<tr>
<td>Ceramill Multi-x</td>
<td>Amann Girrbach (Koblach, AU)</td>
<td>http://www.amanngirrbach.com</td>
</tr>
<tr>
<td>Cercon®</td>
<td>DeguDent (Hanau, DE)</td>
<td>http://www.degudent.de</td>
</tr>
<tr>
<td>ce.novation®</td>
<td>Inoceramic (Hermsdorf, DE)</td>
<td>http://www.cenovation.de</td>
</tr>
<tr>
<td>inLab® MC XL</td>
<td>Sirona Dental Systems (Bensheim, DE)</td>
<td>http://www.sirona.com</td>
</tr>
<tr>
<td>Cyrtina®</td>
<td>Oratio (Zwaag, NL)</td>
<td>http://www.oratio.nl</td>
</tr>
<tr>
<td>DentaCAD</td>
<td>Hint-ELs (Griesheim, DE)</td>
<td>http://www.hintel.de</td>
</tr>
<tr>
<td>Diadem</td>
<td>Alkom Digital (Luxembourg, LU)</td>
<td>http://www.alkom-digital.com</td>
</tr>
<tr>
<td>Digident®</td>
<td>Digident (Pforzheim, DE)</td>
<td>http://www.digident-gmbh.com</td>
</tr>
<tr>
<td>Elkon™</td>
<td>Etkon (Graefelfing, DE)</td>
<td>http://www.etkon.de</td>
</tr>
<tr>
<td>Everest</td>
<td>KaVo (Leutkirch, DE)</td>
<td>http://www.kavo-everest.de</td>
</tr>
<tr>
<td>GN-1</td>
<td>GC Corporation (Tokyo, JP)</td>
<td>http://www.gcdental.co.jp/english/index.html</td>
</tr>
<tr>
<td>infiniDent</td>
<td>Sirona Dental Systems (Bensheim, DE)</td>
<td>http://www.infinident.de</td>
</tr>
<tr>
<td>Katana</td>
<td>Noritake Dental Supply (Aichi, JP)</td>
<td>http://www.noritake-dental.co.jp</td>
</tr>
<tr>
<td>Lava™</td>
<td>3M ESPE (Seefeld, US/DE)</td>
<td>http://cms.3m.com/cms/de/de/2-21/ufkren/view.jhtml</td>
</tr>
<tr>
<td>Medifacturing®</td>
<td>Bego Medical (Bremen, DE)</td>
<td>http://www.bego-medical.de</td>
</tr>
<tr>
<td>MetaNova®</td>
<td>Metanova Dental (Zug, CH)</td>
<td>http://www.metanovadental.com</td>
</tr>
<tr>
<td>President</td>
<td>DCS (Allschwil, CH)</td>
<td>-</td>
</tr>
<tr>
<td>Nanozr®</td>
<td>Panasonic Dental (Osaka, JP)</td>
<td>http://www.panasonic.co.jp/psec/dental</td>
</tr>
<tr>
<td>Procera®</td>
<td>Nobel Biocare (Göteborg, SE)</td>
<td>http://www.nobelbiocare.com</td>
</tr>
<tr>
<td>Xawex</td>
<td>Xawex (Fällanden, CH)</td>
<td>http://www.xawex.com</td>
</tr>
<tr>
<td>Zirconzahn®</td>
<td>Zirkonzahn (Gais, JP)</td>
<td>http://www.zirkonzahn.com</td>
</tr>
</tbody>
</table>

* Ceria stabilized zirconia/alumina nanocomposite.

The fabrication of zirconia structures are list- ed in Table 1.

The spectrum of the contemporary clinical applications of zirconia includes the fabrication of veneers, full and partial coverage crowns or fixed partial dentures (FPDs), posts and/or cores, primary double crowns, implants, and implant abutments. In addition, different zirconia-based auxiliary components such as cutting burs...
and surgical drills, extra-coronal attachments, and orthodontic brackets are also available as commercial dental products. The purposes of this review are to address current knowledge regarding manufacturing, to highlight the indication spectrum, and to discuss clinical advantages/disadvantages and survivability of zirconia ceramic material in dentistry.

Zirconia single-tooth restorations

Bilayer veneers

Color management of discolored teeth with conventional feldspathic veneers is a rather complicated and technique-sensitive clinical problem.\(^{18}\) The fabrication of bilayer veneers made from a veneered high-toughness ceramic core is suggested in order to enhance both esthetics and strength.\(^{19-21}\) The 0.2 mm to 0.4 mm modified core may be fabricated from various high-toughness ceramic materials such as zirconia. In previous studies regarding densely-sintered alumina\(^ {22,23}\) and glass-infiltrated alumina,\(^ {24,25}\) bilayer veneers showed improved color performance on discolored teeth. Therefore, it is assumed that, due to the inherent opacity of the zirconia core,\(^ {26,27}\) the clinical application of zirconia bilayer veneers may offer a high-strength veneer restoration with better masking ability for a given discoloration. No published research data could be found on this topic.

Zirconia crowns

Case selection criteria for zirconia crown restorations (ie, limited interocclusal space, para-functional habits, malocclusion, short clinical crowns, tooth mobility, tooth inclination) and basic clinical sequence do not differ from other all-ceramic crowns (Fig 1). Particularly, tooth preparation clinical guidelines for zirconia crowns are comparable to those for metal-ceramic restorations.\(^ {28,29}\) Appropriate tooth preparation for a zirconia crown should provide favorable distribution of the functional stresses and is usually performed with the use of a specially designed diamond set. In general, tooth preparation for a zirconia restoration requires 1.5 mm to 2.0 mm incisal or occlusal reduction and 1.2 mm to 1.5 mm axial reduction. The axial convergence angle of the crown preparation should be approximately 6 degrees and all dihedral angles should be tapered. The preparation should end with a uniform 0.8 mm to 1.2 mm slight subgingival (approximately 0.5 mm) deep chamfer or marginal shoulder finishing with rounded internal angles. In vitro evaluation of the preparation design for zirconia crowns showed significantly higher fracture strength for a circumferential shoulder preparation than other preparation designs due to smaller axial stress concentration. However, for structurally compromised teeth (such as endodontically treated teeth) a slight chamfer preparation was recommended.\(^ {30}\) Regardless of coping thickness, the fracture load required for knife-edge preparations was found to be 38% greater than that required for chamfer preparations.\(^ {31}\) Conversely, imperfections of chamfer preparation by knife-edge finishing tales can put the integrity of the restoration at risk, since they provide a non-uniform cement layer. Under loading, the tensile stresses developed may exceed the bond strength between the cement and the ceramic or tooth, and this, in combination with production flaws or faults, introduced during the cementation process,
may lead to fracture initiation. Increase of the axial convergence angle from 6 to 20 degrees may decrease the internal space between the prepared abutment and the zirconia core.

Due to the inherent opacity of zirconia, the abutment should be adequately prepared to allow enough space for both the substructure and the veneering material. After milling, a 0.5 mm-thick uniform zirconia core should be fabricated for single posterior crowns. Particularly in the anterior region, strength and esthetic requirements may allow the fabrication of 0.3 mm-thick copings; however, reduction of the coping thickness from 0.5 mm to 0.3 mm can negatively influence the fracture loading capacity (35% decrease) of zirconia single crowns.

Most systems can accommodate the whitish shade of the raw zirconia framework before sintering by a close to the final shade staining. This shading possibility may also be useful in cases of limited interocclusal space where veneering is limited or omitted.

Zirconium oxide crowns may be cemented using both conventional and adhesive methods (comomers, resin-modified glass-ionomers and self-adhesive composite resin cements) that provide comparable bonding strength with the composite resin cements. However, a strong and durable resin bond provides high retention, improves marginal adaptation, prevents microleakage, and increases the fracture resistance of the restored tooth and the restoration. Previous knowledge regarding the adhesion of luting agents and silica-based ceramics cannot be used for resin bonding to Y-TZP. Surface pretreatments used for glasses (ie, hydrofluoric acid etching, silanization) do not im-

Fig 1 A total of 12 maxillary single zirconia crowns (teeth 16 to 26). Top: full coverage preparation of the abutment teeth (palatal aspect). Middle: zirconia frameworks (ZENO Tec®, Wieland, Pforzheim, Germany) in situ (palatal aspect). Bottom: final clinical situation after crown adhesive cementation (palatal aspect). Clinical and laboratory work performed by Dr S Pelekanos and Mr V Mavromatis (both Athens, Greece), respectively.
prove the bonding strength of zirconium ceramics because of the high crystalline content that cannot be modified by etching. In contrast to grinding, which may lead to substantial strength degradation, sandblasting seems to strengthen Y-TZP and improve bonding.

It was demonstrated that the application of the adhesive phosphate monomer 10-methacryloyloxydecyl dihydrogen phosphate (MDP) or an MDP-containing bonding/silane coupling agent mixture after airborne-particle abrasion (110 μm Al₂O₃ at 2.5 bar) and a phosphate-modified resin cement (eg, Panavia™, Kuraray, Osaka, Japan) may provide a long-term durable resin bond to zirconium oxide ceramic with promising high tensile bond strengths (39.2 MPa). Furthermore, it was shown that the application of a tribochemical silica coating (eg, CoJet™, 3M ESPE, Seefeld, Germany) in combination with an MDP-containing bonding/silane coupling agent mixture increased the shear bond strength between zirconium-oxide ceramic and phosphate-modified resin cement (Panavia F, Kuraray). The tribochemical silica coating process was also tested with zirconia silanization (N.B. prefabricated zirconia posts), which resulted in an increased bond strength. Moreover, a self-curing dental adhesive system containing 4-META/MMA-TBB (eg, Superbond C&B, Sun Medical, Tokyo, Japan) exhibited high bond strengths regardless of the different surface treatments such as silica coating, airborne particle abrasion, hydrofluoric acid (HF) etching and diamond grinding. It was illustrated that the bond strength of bis-GMA resin cement (eg, Variolink II, Ivoclar Vivadent, Schaan, Liechtenstein) to the zirconia ceramic can be significantly increased after pre-treat-
ment with plasma spraying (hexamethyldisiloxane) or by the use a low-fusing porcelain layer.47

Regardless of surface pre-treatments, long-term \textit{in vitro} water storage and thermocycling can negatively influence the durability of the resin bond strength to zirconia ceramic.41 Thermocycling induces a higher impact than water storage at a constant temperature.48 It is essential to avoid contamination of the zirconia bonding surfaces during try-in procedures, either by saliva contact or by a silicone disclosing medium. It was found that air abrasion with 50 mm Al\textsubscript{2}O\textsubscript{3} at 2.5 bar for 15 s is the most effective cleaning method to regain an optimal bonding surface.49,50

The clinical application of zirconia crowns in removable prosthodontics is a new approach, implemented either as a crown with guide planes and rest seats51 or as a primary crown for double crown systems.52,53 Particularly in double crown systems, the secondary crowns are preferably fabricated with galvano-forming technology.53 Despite the excellent wear resistance and biocompatibility of the primary zirconia crown, the colored zirconia copings are a solution to the esthetic compromise of marginal metal exposure.

Zirconia fixed partial dentures

Based on the exceptional mechanical properties of zirconia (eg, high flexural strength and fracture resistance),54,55 Y-TZP is the most recent framework material for the fabrication of all-ceramic FPDs either in anterior (Fig 2) or posterior sites (Fig 3).56-59 The load bearing capacity of Y-TZP FPDs was found to be significantly higher than...
other conventional all-ceramic systems, such as lithium-disilicate glass ceramics and zirconia-reinforced glass-infiltrated alumina, and it has been reported that fracture resistance was further increased after veneering.

Zirconia-based FPDs may exhibit a good long-term prognosis if connectors are properly designed and fabricated. Finite element stress analysis studies on three-unit posterior FPDs showed that maximum tensile stresses occur on the gingival site of the connector between the two abutments, and the magnitude significantly depends on the loading conditions, shape, and size of the connector. Furthermore, it has been observed that when zirconia FPDs are subjected to the peak of tensile stresses, the properties of the feldspathic porcelain, used for veneering of high-toughness core materials, may control the failure rate of the restoration. Research shows that ultimate strength can be achieved by omitting porcelain veneering at the gingival surface of the connectors. Calculations, based on the fatigue parameters, indicate that connector dimensions should be at least 5.7 mm², 12.6 mm², and 18.8 mm² for the fabrication of a 3-, 4-, or 5-unit FPD, respectively. It was recommended that the connector size should be larger than 7.3 mm², especially for the clinical application a 4-unit posterior Y-TZP FPD.

In vitro evaluation of Y-TZP FPDs with smaller connectors (3.0 mm x 3.0 mm) also revealed good fracture resistance results. Moreover, a minimum diameter of 4.0 mm for all-ceramic zirconia-based FPDs with long spans or replacing molars has been recommended. Since connector dimensions and geometry are crucial for the appropriate stability of the restoration under functional loading, the designing features of the framework must be optimized in order to reinforce the connector areas and provide the adequate support to the veneering material (note framework design in Figs 2 and 3). The marginal fit of most zirconia-based FPDs fabricated with CAD/CAM technology meets clinical re-

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>System</th>
<th>Zirconia FPDs</th>
<th>Units</th>
<th>Duration</th>
<th>Fractures (%)</th>
<th>Chipping (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sturzenegger</td>
<td>2000</td>
<td>Direct ceramic machining</td>
<td>Anterior</td>
<td>21</td>
<td>21</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Pospiech</td>
<td>2003</td>
<td>Lava™</td>
<td>Posterior</td>
<td>38</td>
<td>38</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>Bornemann</td>
<td>2003</td>
<td>Cercon®</td>
<td>Anterior</td>
<td>59</td>
<td>44</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>von Steyern</td>
<td>2005</td>
<td>Preventi</td>
<td>Posterior</td>
<td>3</td>
<td>17</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Sailer</td>
<td>2006</td>
<td>Direct ceramic machining</td>
<td>Anterior</td>
<td>57</td>
<td>N.R.</td>
<td>N.R.</td>
<td>3</td>
</tr>
<tr>
<td>Raigrodski</td>
<td>2006</td>
<td>Lava™</td>
<td>Posterior</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Sailer</td>
<td>2007</td>
<td>Direct ceramic machining</td>
<td>Anterior</td>
<td>33</td>
<td>17</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Edelhoff</td>
<td>2008</td>
<td>Digident®</td>
<td>Posterior</td>
<td>4</td>
<td>18</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Tinschert</td>
<td>2008</td>
<td>Preventi</td>
<td>Posterior</td>
<td>15</td>
<td>50</td>
<td>44</td>
<td>21</td>
</tr>
<tr>
<td>Molin and Karlsson</td>
<td>2008</td>
<td>Cad.esthetics®</td>
<td>Posterior</td>
<td>0</td>
<td>19</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Roediger</td>
<td>2009</td>
<td>Cercon®</td>
<td>Posterior</td>
<td>99</td>
<td>N.R.</td>
<td>N.R.</td>
<td>4</td>
</tr>
</tbody>
</table>

N.R., not referred to; * 30% slightly rough or pitted occlusal surfaces.
quirements. However, regardless of the CAD/CAM system, the marginal adaptation is influenced by framework configuration.

After fabrication, Y-TZP frameworks are relatively opaque and white in color; therefore the compatible feldspathic porcelain veneering material is essential to achieve good esthetics. Literature data are rather contradictory regarding the effect of surface pre-treatment (ie, grinding, sandblasting) on the strength characteristics of Y-TZP frameworks. Moreover, during the veneering procedure the frameworks are exposed to high temperatures and moisture, which may cause a mechanical property degradation of the restoration.

Short-term clinical data showed that Y-TZP FPDs have a promising survival time for anterior as well as posterior regions (Table 2). However, the available clinical studies (see Table 2), with an observation period of up to 5 years, disclosed chipping of the veneering material as a major problem that might occur increasingly over time (15.2%). The overall fracture rate of the zirconia frameworks were relatively low (up to 2.2%). Fractographic analyses of retrieved zirconia FPDs showed that primary fractures initiated from the gingival surfaces of the connectors to the veneering surfaces while delamination of the ceramic structures in the veneering/zirconia core interface was controlled by secondary fracture initiation sites and failure stresses. Implant-supported Y-TZP FPDs have also exhibited an unacceptable amount of veneering chipping either in vitro or in vivo.

As an alternative to complete coverage, partial-coverage resin-bonded zirconia FPDs (RB-Z-FPDs) were introduced as less invasive treatment options for both the anterior and the posterior regions. The par-

Fig 4 Anterior cantilevered zirconia resin-bonded FPD (teeth 11 and 21). Top: zirconia framework (ZENO Tec, Wieland) in situ (occlusal aspect). Middle: zirconia RB-FPD after veneering. Bottom: final clinical situation after adhesive cementation of the restoration (occlusal aspect). Clinical and laboratory work performed by Dr SO Koutayas (Corfu, Greece) and Mr E Blachopoulos (Athens, Greece), respectively.
Table 3: Overview of current zirconia implants.

<table>
<thead>
<tr>
<th>Year</th>
<th>Manufacturer</th>
<th>Website</th>
<th>Name</th>
<th>Material</th>
<th>Color</th>
<th>Type</th>
<th>Diameter (mm)</th>
<th>Length (mm)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>Gebr. Brasseler</td>
<td>http://www.kometde.de</td>
<td>CeraPost</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>conical</td>
<td>0.5, 0.9, 1.3, 1.7</td>
<td>12</td>
<td>direct/indirect restoration</td>
</tr>
<tr>
<td>1998</td>
<td>Ivoclar Vivadent</td>
<td>http://www.ivoclarvivadent.com</td>
<td>CosmoPost</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical/conical</td>
<td>1.4, 1.7</td>
<td>20</td>
<td>25 to be measured</td>
</tr>
<tr>
<td>2001</td>
<td>Cendres+Métaux</td>
<td>http://www.cmsa.ch</td>
<td>CM</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical/conical</td>
<td>1.3, 1.5, 1.7</td>
<td>11</td>
<td>direct restoration</td>
</tr>
<tr>
<td>2005</td>
<td>ateck Dental</td>
<td>http://www.atec-dental.de</td>
<td>Endofix®</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical/conical/tipped</td>
<td>1.3, 1.5</td>
<td>6</td>
<td>direct/indirect restoration</td>
</tr>
<tr>
<td>2005</td>
<td>Incermed</td>
<td>http://www.incermed.ch</td>
<td>Endoseal/WSR</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical</td>
<td>1.4</td>
<td>20</td>
<td>direct restoration</td>
</tr>
<tr>
<td>2006</td>
<td>Nordin Dental</td>
<td>http://www.nordin-dental.com</td>
<td>Biopost</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical</td>
<td>1.3, 1.5</td>
<td>6</td>
<td>seal after apicoectomy</td>
</tr>
<tr>
<td>2006</td>
<td>Nordin Dental</td>
<td>http://www.nordin-dental.com</td>
<td>Biosnap</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical/conical</td>
<td>1.5, 1.6, 1.7</td>
<td>11</td>
<td>direct restoration</td>
</tr>
<tr>
<td>2006</td>
<td>Nordin Dental</td>
<td>http://www.nordin-dental.com</td>
<td>Zirix</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical</td>
<td>1.1, 1.3, 1.4, 1.5, 1.6, 1.7</td>
<td>11</td>
<td>direct restoration</td>
</tr>
<tr>
<td>2006</td>
<td>Geberit</td>
<td>http://www.geberit.com</td>
<td>CeraPost</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical/conical</td>
<td>1.5, 1.6, 1.7</td>
<td>11</td>
<td>direct restoration</td>
</tr>
<tr>
<td>2006</td>
<td>Geberit</td>
<td>http://www.geberit.com</td>
<td>Biopost</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical</td>
<td>1.1, 1.3, 1.4, 1.5, 1.6, 1.7</td>
<td>11</td>
<td>direct restoration</td>
</tr>
<tr>
<td>1999</td>
<td>Carex Dental</td>
<td>www.carex-dental.com</td>
<td>Geberit</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical</td>
<td>1.10, 1.25, 1.35, 1.50</td>
<td>25 to be measured</td>
<td>direct restoration</td>
</tr>
<tr>
<td>1999</td>
<td>Carex Dental</td>
<td>www.carex-dental.com</td>
<td>Geberit</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical</td>
<td>1.10, 1.25, 1.35, 1.50</td>
<td>25 to be measured</td>
<td>direct restoration</td>
</tr>
<tr>
<td>1999</td>
<td>Carex Dental</td>
<td>www.carex-dental.com</td>
<td>Geberit</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical</td>
<td>1.10, 1.25, 1.35, 1.50</td>
<td>25 to be measured</td>
<td>direct restoration</td>
</tr>
<tr>
<td>1999</td>
<td>Carex Dental</td>
<td>www.carex-dental.com</td>
<td>Geberit</td>
<td>ZrO2</td>
<td>opaque/whitish</td>
<td>cylindrical</td>
<td>1.10, 1.25, 1.35, 1.50</td>
<td>25 to be measured</td>
<td>direct restoration</td>
</tr>
</tbody>
</table>
Zirconia posts

A metal post and core system restricts light transmission and thus gives an undesirable dark shadow in the root and cervical areas, especially through thin periodontal tissues and significantly decreases the value of the coronal part of the restoration. With the introduction of custom-made all-ceramic posts and cores or zirconium dioxide (ZrO$_2$) prefabricated posts, a unique esthetic approach has been developed in combination with all-ceramic crowns. Dentin-like shade all-ceramic posts and cores contribute to a deeper diffusion of light and therefore provide an appropriate depth of translucency.

Contemporary zirconia powder technology contributes to the fabrication of new biocompatible and esthetic endodontic posts with improved flexural strength (approximately 820 MPa) and fracture toughness (approximately 8 MPa*m$^{1/2}$). As an additional indication, zirconia endodontic endosseous cones seem to be acceptable for sealing purposes in resected teeth after apicectomy.

Current commercially available zirconia post systems are listed in Table 3.

The placement of a prefabricated post (ie, zirconia post) is usually unnecessary for intact endodontically treated teeth (without proximal cavities), where only the access opening should be sealed with hybrid composite. The clinical application of zirconia posts in teeth with small tooth structure defects can be exercised, in conjunction with hybrid composites or special built-up composites, according to the concepts of contemporary adhesive dentistry. If adequate sound coronal tooth structure is present, all-ceramic posts and cores also can be viable following two fabrication techniques: direct or indirect application. According to the two-piece technique, a ceramic core (ie, zirconia core) formerly fabricated with the use of a copy-milling machine (ie, Celay system, Mikrona, Spreitenbach, Switzerland) or today using CAD/CAM technology, is placed onto the prepared tooth, and then a prefabricated ZrO$_2$ post (eg, CeraPost, Gebr. Brasseler, Lemgo, Germany) is adhesively
cemented into the root canal through the canal of the core (Fig 5). Moreover, according to the heat-pressing technique, a glass-ceramic core (EmpressCosmo, Ivoclar Vivadent) is heat-pressed over a prefabricated ZrO₂ post (eg, CosmoPost, Ivoclar Vivadent), so that both materials are integrated to a unified and solid post-and-core-restoration.

After placement of the zirconia posts and cores for the pre-prosthetic management of the remaining abutment tooth structure, anterior endodontically treated teeth may be successfully restored with single all-ceramic crowns and withstand functional incisive forces. Additional in vitro testing identified the incidence of root fractures, however, short-term clinical evaluation of zirconia posts and/or cores were promising. A 4-year retrospective study showed that single crown restorations using prefabricated ZrO₂ posts with indirect glass-ceramic cores displayed a significantly higher failure rate than using the same posts with direct composite build-ups.

The clinical application of zirconia posts is an almost irreversible procedure since their removal is extremely difficult. Essentials for achieving clinical longevity are tooth preservation during root canal preparation and maintenance of both the appropriate ferrule effect (minimum 2 mm in height) and the periphery of the root canal dentin (minimum 1 mm in width). Zirconia posts display a higher modulus of...
elasticity (200 MPa) than natural dentin (16.5 to 18.5 MPa); in the absence of the ferrule effect, catastrophic stresses can be transferred to the root.119,120,126 Adhesive cementation of such rigid posts might also present interfacial defects within the built-up composite or the dentin.127 Due to the above-mentioned limitations, a systematic review concerning the biomechanics of endodontically restored teeth suggested the use of post-and-core materials with physical properties close to those of natural dentin.128,129

Zirconia implants

Titanium release after implant placement130,131 intensified the discussion regarding sensitization or allergies,132,133 which subsequently stimulated holistic approaches that embrace metal-free implant dentistry. However, the main practical disadvantage of titanium implants is the management of the grayish appearance through thin peri-implant mucosa. All of the above have oriented dental research and propelled the clinical application of implants made from different novel ceramic biomaterials such as single- and polycrystal alumina,134 bioactive glasses,135 hydroxidapatite,136 and zirconia (Fig 6).137-139 Furthermore, zirconium oxide coatings (approximately 100 nm) of Ti-6Al-4V,140 or titanium orthopedic implants, usually after the application of macro-texturing methods,142 may promote bone growth and thus provide evidence of enhanced implant osseointegration.

Y-TZP is currently considered an attractive and advantageous endosseous dental implant material because it presents enhanced biocompatibility, improved mechanical properties, high radiopacity, and

Fig 6 Zirconia implant supported zirconia crown (tooth 12) (Courtesy Prof RJ Kohal, Freiburg, Germany). Top: zirconia implant placement after tooth extraction. Middle: 4 months later; placement of retraction cord prior to impression. Bottom: after final cementation of zirconia crown (Procera, Nobel Biocare). Laboratory work performed by Mr W Woerner (Freiburg, Germany).
easy handling during abutment preparation. Zirconia ceramic is well-tolerated by bone and soft tissues and possesses mechanical stability. Since the difference in bone-to-implant attachment strength between bio-inert ceramics and stainless steel was not significant, it was indicated that the affinity of bone to bio-inert ceramics has almost the same capacity as metal alloys.

In vitro culture tests were performed to verify biocompatibility, genetic effects, and osteoblast interactions of potential zirconia implant substrates. Recently, a series of well-reviewed studies showed no adverse response, surface-specific and non-surface-specific proliferation, attachment and spreading of osteoblasts, and no genetic effect of zirconia on bone formation.

Animal studies that focused on zirconia implants without loading demonstrated comparable qualitative and quantitative characteristics to that of the titanium implants in biocompatibility and osteoinductivity. In vivo studies proved that micro-modification of Y-TZP implants, resulting in a roughened surface, was beneficial for initial bone healing, bone apposition, and interfacial shear strength. Additional animal studies confirmed that Y-TZP and Ti implants can be successfully osseointegrated under loading conditions, however, one research group noted a relatively high marginal bone loss while a second group reported similar soft tissue peri-implant height.

Different in vitro studies were performed to define the feasibility of zirconia implant systems. A finite element assessment of the loading resistance revealed non-distractive and well-distributed stress patterns, similar to those of titanium implants. Furthermore, it was proposed that one-piece zirconia implants restored with densely sintered alumina crowns (Procera®, Nobel Biocare, Göteborg, Sweden) could possibly fulfill the biomechanical requirements for anterior tooth replacement. Regarding the impact of the design (one or two pieces) on the biomechanical behavior of Y-TZP implants using chewing simulation testing conditions, a prototype two-piece zirconia implant revealed low fracture resistance at the level of the implant head and therefore questionable clinical performance, while one-piece zirconia implants seem to be clinically applicable. Moreover, it was illustrated that preparation of the one-piece zirconia implant in order to accept a crown had a statistically significant negative influence on the implant fracture strength.

To date, there are five commercially available zirconia implant systems on the market (listed in Table 4). Only one system (Sigma, Incermed, Lausanne, Switzerland) provides both one- and two-piece designs while all the other (CeraRoot, CeraRoot Dental Implants, Barcelona, Spain; Z-Look3, Z-Systems, Constance, Germany; whiteSKY, Bredent Medical, Senden, Germany, and zit-z, Ziterion, Uffenheim, Germany) are available in a one-piece design. Furthermore, a recent clinical trial described a type of customized zirconia root-analogue implant with a micro- and macro-retentive implant surface, however, neither the zirconia material nor the milling device were specified.

Despite some promising preliminary clinical results, no clinical long-term data are available concerning zirconia implants. Survival rates after one year were reported at 93% (189 one-piece implants, Z-Systems), 98% (66 one-piece implants, Z-
Zirconia implant abutments

In modern implant dentistry, high survival rates for implants and implant-supported single crowns can be expected.168 Concerning the esthetic outcome, conventional metal (titanium) abutments do shimmer, especially through all-ceramic crowns with increased semi-translucency and, subsequently, through thin peri-implant mucosa, resulting in a grayish appearance of the entire restoration.169 Thin periodontal biotypes cannot mask this negative effect, nor guarantee a longlasting architectural stability of the peri-implant tissue.170,172 These esthetic problems, or the possible exposure of the underlying metal abutment which may be visually perceivable, can be accommodated by the clinical application of all-ceramic abutments.167,173

All-ceramic implant abutments made from aluminum oxide ceramic material (glass infiltrated or densely sintered aluminas) were first introduced as an esthetic alternative to titanium ones in the mid-1990s.174,176 The alumina abutments presented pleasing optical properties,177 adequate fracture strength for the anterior regions,178 and an excellent 5-year prognosis.179 However, implant manufacturers have turned their production to abutments made from zirconia (Fig 7).169 Besides strength considerations, Y-TZP implant abutments offer enhanced biocompatibility,1 metal-like radiopacity for better radiographic evaluation,180 and, ultimately, reduced bacterial adhesion,181 plaque accumulation,182 and inflammation risk.183 Moreover, Y-TZP abutments may promote soft tissue integration,184 while favorable peri-implant soft tissues may be clinically achieved adjacent to zirconia185 or alumina-zirconia abutments186 and zirconia healing caps.187 A systematic review revealed that zirconia abutments could maintain an equivalent bone level in comparison to titanium, gold, and aluminum oxide ones.188 In vitro examination of the cellular attachment, spreading and proliferation of human gingival fibroblasts to milled and polished non-veneered ceramic surfaces showed significant differences associated with the various surface modifications, requiring further investigation and documentation for clinical extrapolation.189

Y-TZP abutments are available in two types: prefabricated and custom-made. Prefabricated zirconia abutments are a reliable and practical solution, but CAD/CAM technology is also beneficial in designing fully individualized zirconia abutments for ideal soft-tissue integration and esthetics. Both types of abutments give the opportunity for further customization either by extra-oral or intra-oral preparation using special water-cooled cutting di-
amonds indicated by the manufacturer.

Representative prefabricated and custom-made Y-TZP abutments are shown in Table 5. According to the knowledge of the authors, additional Y-TZP implant abutments are also commercially available from the following companies: Thommen Medical (SPI® ART abutment), Camlog (Esthomic ceramic abutment), Zimmer Dental (Contour ceramic abutment), Dentalium Tiolox Implants (Tiolox® Premium), Wieland Dental Implants (wi.tal ceramic abutment), Sybron Implant Solutions (CAD/CAM-base post), Cad.esthetics (Denzir implant post).

Concerning abutment custom preparation, cutting efficiency and finishing by different diamond types were explored and the achieved effects were specified for certain kinds of abutments, indicating that achieving the best finish lines and surfaces may require the use of specific cutting instruments and protocols. Most manufacturers recommend either a pronounced chamfer or a shoulder preparation with rounded inner line angles. Moreover, subgingival margins should not be overextended beyond the point that removal of permanent cement presents difficulties and, generally, the emergence profile should be rather concave and must follow known diagnostic regimens. Recently, it was shown that adhesively luted single implant anterior crowns to zirconia abutments with a 0.5 mm to 0.9 mm deep circumferential chamfer preparation have the potential to successfully serve for more than five years of simulated fatigue. Marginal adaptation of zirconia abutments can be achieved either by the abutment itself or by a titanium integrated post and an occlusal screw. In vitro fit evaluation of internal or external hexagon CAD/CAM cus-

Fig 7 Single implant all-ceramic crown restoration (VITA® In-Ceram SPINELL, Vident, Brea, CA, USA) with the use of a zirconia prefabricated abutment (Cercon® for XIVE, Dentsply Friadent, Mannheim, Germany) of an upper right lateral incisor (tooth 12). Top: abutment connection (labial aspect). Middle: zirconia abutment after laboratory modification and Ti screw. Bottom: final clinical situation after crown adhesive cementation (labial aspect). Clinical and laboratory work performed by Dr SO Koutayas (Corfu, Greece) and Dr D Charisis (Athens, Greece), respectively.
<table>
<thead>
<tr>
<th>Year</th>
<th>Manufacturer</th>
<th>Website</th>
<th>Name</th>
<th>Material</th>
<th>Color</th>
<th>Type</th>
<th>Diameter (mm)</th>
<th>Length (mm)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Incermed</td>
<td>http://www.incermed.ch</td>
<td>Sigma</td>
<td>HIP ZrO₂/TZP</td>
<td>whitish</td>
<td>two-piece design</td>
<td>3.4, 3.7, 4.28</td>
<td>11.6, 14.4</td>
<td>transgingival height: 1.52 mm</td>
</tr>
<tr>
<td>2004</td>
<td>Z-Systems</td>
<td>http://www.z-systems.biz</td>
<td>Z-Look3</td>
<td>HIP ZrO₂/TZP</td>
<td>whitish</td>
<td>one-piece design</td>
<td>3.4, 3.7, 4.28</td>
<td>14, 16.7, 18.5</td>
<td>abutment height 2.98–3.28 mm, transgingival height 0.93 mm</td>
</tr>
<tr>
<td>2004</td>
<td>CeraRoot</td>
<td>http://www.ceraroot.com</td>
<td>Ceraroot</td>
<td>HIP ZrO₂/TZP</td>
<td>whitish</td>
<td>one-piece design</td>
<td>3.5, 4.0, 5.0</td>
<td>14.0, 16.8</td>
<td>narrow neck D3.6N, reduced shoulder D4.0, ball attachment D 4.0/Ø 2.9</td>
</tr>
<tr>
<td>2007</td>
<td>Bredent</td>
<td>http://www.bredent-medical.com</td>
<td>whiteSKY</td>
<td>HIP ZrO₂/TZP</td>
<td>whitish</td>
<td>one-piece design</td>
<td>3.5, 4.0, 5.0</td>
<td>10.0, 12.0, 14.0</td>
<td>root form, scalloped shoulder</td>
</tr>
<tr>
<td>2006</td>
<td>Ziterion</td>
<td>http://www.ziterion.com</td>
<td>zit-z</td>
<td>HIP ZrO₂/TZP</td>
<td>whitish</td>
<td>one-piece design</td>
<td>3.5, 4.0, 5.0</td>
<td>10.0, 12.0, 14.0</td>
<td>transgingival height: 1.5, 2.5 mm</td>
</tr>
</tbody>
</table>
orthodontic brackets offer some advantages over traditional ones. Y-TZP orthodontic brackets provide enhanced strength, superior resistance to deformation and wear, reduced plaque adhesion, and improved esthetics. In addition they exhibit good sliding properties with both stainless steel and nickel-titanium arch wires and the same frictional characteristics as polycrystalline alumina brackets. Clinically, they present acceptable bond strengths using light-cured adhesives, however, the location of bond failure is detected at the bracket/adhesive interface. Shear-strength forces at failure were also found within clinical acceptance and significantly higher than those of metal brackets. Conversely, Y-TZP orthodontic brackets, in comparison with the metal ones, may exhibit reduced efficiency regarding tooth movement, enamel damage due to high debonding rate, severe enamel wear to the opposing dentition, and an off-white, highly opaque appearance.

Precision attachments

The clinical application of prefabricated zirconia attachments is based on the wear and strength characteristics of the material. However, there is no literature available regarding either clinical performance or effectiveness. Two different types of Y-TZP attachments are currently on the market: a ball attachment for overdentures as a part of a zirconia post (Biosnap, Incermed) available in three diameters for three levels of retention (Table 3) and an extracoronal, cylindrical, or ball attachment for removable partial dentures (Proxisnap, Incermed).

Zirconia dental auxiliary components

Orthodontic brackets

Currently available ceramic polycrystalline zirconia brackets offer some advantages over traditional ones. Y-TZP orthodontic brackets provide enhanced strength, superior resistance to deformation and wear, reduced plaque adhesion, and improved esthetics. In addition they exhibit good sliding properties with both stainless steel and nickel-titanium arch wires and the same frictional characteristics as polycrystalline alumina brackets. Clinically, they present acceptable bond strengths using light-cured adhesives, however, the location of bond failure is detected at the bracket/adhesive interface. Shear-strength forces at failure were also found within clinical acceptance and significantly higher than those of metal brackets. Conversely, Y-TZP orthodontic brackets, in comparison with the metal ones, may exhibit reduced efficiency regarding tooth movement, enamel damage due to high debonding rate, severe enamel wear to the opposing dentition, and an off-white, highly opaque appearance.

Cutting and surgical instruments

Newly developed zirconia cutting instruments (ie, drills, burs) can be used in implantology, maxillofacial surgery, operative dentistry, and soft tissue trimming (eg, Ceradrill™ CeraBur™ K1SM CeraBur™ Ceratip, respectively, all Gebr. Brasseler). These instruments offer optimal cutting efficiency with smooth operation and reduced vibration while their proven resistance to chemical corrosion promises a long-lasting performance. Finally, surgical
Table 5 Overview of prefabricated and customized Y-TZP implant abutments.

<table>
<thead>
<tr>
<th>Year</th>
<th>Manufacturer</th>
<th>Website</th>
<th>Name</th>
<th>Material</th>
<th>Color</th>
<th>Connection</th>
<th>Implant diameter (mm)</th>
<th>Gingival height</th>
<th>Inclination</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Dentsply Friadent</td>
<td>http://www.friadent.de</td>
<td>Cercon® balance</td>
<td>Y-TZP</td>
<td>whitish</td>
<td>internal cone Ti screw</td>
<td>Arkylos® 5.5, 7.0</td>
<td>1.5, 3.0 scalloped</td>
<td>straight (0°), angled (15°)</td>
<td>prefabricated</td>
</tr>
<tr>
<td>2001</td>
<td>Friadent</td>
<td>http://www.friadent.de</td>
<td>Friadent</td>
<td>Y-TZP</td>
<td>whitish</td>
<td>internal hex Ti screw</td>
<td>XiVE 3.8, 4.5</td>
<td>1.0, 2.0</td>
<td>straight (0°), angled (15°)</td>
<td>prefabricated</td>
</tr>
<tr>
<td>2001</td>
<td>Nobel Biocare</td>
<td>http://www.nobelbiocare.com</td>
<td>Procera™ abutment zirconia</td>
<td>Y-TZP</td>
<td>whitish, dentin</td>
<td>internal hex Ti</td>
<td>Straumann RP/WP</td>
<td>customized</td>
<td>straight (0°), angled (17°)</td>
<td>prefabricated</td>
</tr>
<tr>
<td>2001</td>
<td>Straumann</td>
<td>http://www.straumann.com</td>
<td>Procera™ abutment zirconia for other implants</td>
<td>Y-TZP Ti seating post</td>
<td>whitish</td>
<td>internal hex Ti screw</td>
<td>NobelReplace™ N/P/R/WP Straumann RN 48, camlog 3.3 to 6.0</td>
<td>customized</td>
<td>straight (0°)</td>
<td>prefabricated</td>
</tr>
<tr>
<td>2001</td>
<td>Biomet 3i</td>
<td>http://www.biomet3i.com</td>
<td>RN synOcta® custom abutment (cares)</td>
<td>Y-TZP Ti seating post</td>
<td>whitish</td>
<td>internal hex Ti screw</td>
<td>Straumann RN 4.8</td>
<td>customized</td>
<td>straight (0°)</td>
<td>prefabricated</td>
</tr>
<tr>
<td>2001</td>
<td>Bego</td>
<td>http://www.bego.com</td>
<td>BeCe® sub-lac ceramic</td>
<td>Y-TZP Ti seating ring or post</td>
<td>whitish</td>
<td>internal hex au-screw</td>
<td>NanoTite™ Osseotite NT®, pw, xp 4.1, 5.0</td>
<td>customized</td>
<td>straight (0°), angled (20°)</td>
<td>prefabricated</td>
</tr>
<tr>
<td>2001</td>
<td>Astra Tech</td>
<td>http://www.astratetchdental.com</td>
<td>ZirDesign™</td>
<td>Y-TZP</td>
<td>whitish</td>
<td>internal hex & Ti screw</td>
<td>Certain® 4.1, 5.0</td>
<td>1.5, 3.0 scalloped</td>
<td>customized</td>
<td>prefabricated</td>
</tr>
<tr>
<td>2003</td>
<td>Astra Tech</td>
<td>http://www.atlantiscomp.com</td>
<td>Atlantis™</td>
<td>Y-TZP</td>
<td>whitish</td>
<td>internal cone Ti screw</td>
<td>Certain® ZirDesign™</td>
<td>4.0</td>
<td>1.5, 3.0 scalloped</td>
<td>customized</td>
</tr>
</tbody>
</table>

instruments such as scalpels, tweezers, periosteal elevators, and depth gauges can be made out of alumina-toughened zirconia (ATZ) by injection moulding (Z-Look3 Instruments, Z-Systems).

Discussion

Technology has many origins that include a combination of inspiration, fortuitous events, and basic research. After the discovery of the toughening transformation potential of zirconia in the mid-1970s, ample progress has been made in dental science regarding ceramic materials. Today, zirconia technology has become the cynosure of the research and clinical efforts of an increasing number of dental scientists. Industrial development of more than 20 different CAD/CAM systems (Table 1) concerning zirconia manufacturing indicates an increasing clinical interest and fosters the firm conviction that zirconia could become the star of dental restorations. According to research of manufacturers, the clinical spectrum of zirconia-based restorations appears impressive and embraces practically every restorative aspect including veneers, crowns, FPDs, posts, implant abutments, and even implants. In 2006 more than 100 metric tons of medical grade ZrO₂ raw material was processed worldwide, while in 2008, 250 tons were expected. This increased and conspicuous consumption of zirconia for dental applications signifies that zirconia-based restorations with the support of computerized systems will be of utmost importance in the dental profession in the coming years.

Current in vitro research, performed to understand the nature of the technology, included cell, thermal fatigue, colorimetric, marginal fit, fracture strength, and bonding studies. In vitro results are promising, especially in all aforementioned fields, however, since clinical research focuses on how technology affects humans and other living organisms, extensive clinical application of the zirconia technology should await confirmation through cohort longitudinal clinical studies. Despite the known high biocompatibility of zirconia in both soft and hard tissues, dental zirconia restorations are slowly moved from the controlled experimental setting to the clinical environment and some clinical studies of up to five years can be found in the literature. Existing studies evaluated clinical parameters (eg, fit, color performance, survival rates) and determined the frequency of adverse effects (eg, chipping, fractures, debonding), mainly regarding the clinical application of zirconia FPDs and posts. Material-specific phase transformation, particularly from the tetragonal to the monoclinic crystal phases, inhibits crack propagation and results in the superior mechanical performance of zirconia. Therefore, zirconia frameworks obtain excellent physical properties such as high strength and fracture toughness. Conversely, during aging in an aqueous oral environment, spontaneous phase transformations of the tetragonal zirconia to monoclinic phase, known as low temperature degradation (LTD), could lead to the formation of microcracks and subsequently to a decrease in strength. This problem mainly involves frameworks or parts of a framework that are not subjected to porcelain veneering and zirconia implants and abutments that are exposed to the oral environment. Non-veneered zirconia frameworks should be avoided and during...
framework design it is advisable to ensure appropriate space for coating all zirconia surfaces by a thin porcelain or glass layer. Recently reported degradation-free innovative bioceramics such as zirconia magnesia (Mg-PSZ with bioactive glass coating)213 and alumina composites (i.e., 80\% TZP of 90 mol\% ZrO\textsubscript{2} + 6 mol\% Y\textsubscript{2}O\textsubscript{3} + 4 mol\% Nb\textsubscript{2}O\textsubscript{5} composition, and 20\% Al\textsubscript{2}O\textsubscript{3}217 or 70\% TZP stabilized with 10 mol\% CeO\textsubscript{2} + 30 vol\% Al\textsubscript{2}O\textsubscript{3} + 0.05 mol\% TiO\textsubscript{2})218 might be a future solution to LTD aging phenomena.219

Studies regarding these materials are limited and, particularly for the Ce-TZP/Al\textsubscript{2}O\textsubscript{3} nanocomposite of special interest for dentistry, are contradictory. Although both materials exhibit similar activation energies (90 kJ/mol), in comparison to Y-TZP, the Ce-TZP/Al\textsubscript{2}O\textsubscript{3} nanocomposite presents a significantly slower transformation from the tetragonal to the monoclinic phase, which is controlled by the chemical reaction of water and the Zr-O-Zr bond.220 The instability of the tetragonal phase possibly occurs because of the reaction of Y\textsubscript{2}O\textsubscript{3} with the aqueous environment (vapor) producing yttrium hydroxide (Y[OH]\textsubscript{3}H\textsubscript{2}O).220 Consequently, along with a satisfactory durability in terms of LTD aging, Ce-TZP/Al\textsubscript{2}O\textsubscript{3} may produce a higher biaxial flexure strength than Y-TZP, which is further increased after sandblasting.211,221 However, apart from improved biomechanical performance, bond strength of Ce-TZP/Al\textsubscript{2}O\textsubscript{3} to veneering ceramics is low, and results in a high susceptibility for delamination and chipping.222

The technical complications of FPDs identified by most clinical studies with a minimum three-year observation time were predominantly the identification of fractures within the veneering ceramic (chipping) and secondly, fractures of the core and debonding of the restoration. Current clinical studies revealed an increased chipping rate that ranged from 6\% to 15\% between three to five years (Table 2), while for the metal-ceramic restorations the incidence of chipping was between 4\% and 10\% after 10 years.223

Fracture of the zirconia frameworks is highly possible but not probable, and failures can be attributed mainly to biological and technical reasons. However, after appropriate design and material selection, lifetime predictions for posterior Y-TZP FPDs are estimated to be more than 20 years.224 According to the available data, Y-TZP FPDs can be comparable to the metal-ceramic FPDs and therefore successfully withstand physiologically functional loading forces.82

Chipping origin is still unknown and hypothetically could be associated with the bond failure between the veneering material and the zirconia framework.82 Bond strength at the specific core/veneer interface is mainly dependent on pre-stresses, due to differences in thermal expansion coefficients,225 poor core wetting and application of liner materials,226 porcelain firing shrinkage,227,228 phase transformation due to thermal influences,229 loading stresses, inherent flaw formation during processing,230 and addition of coloring pigments.230

Thermal expansion coefficients of the veneering porcelains, especially for zirconia ceramics (8.8 to 10.0 x 106 per C), have a slight but compatible mismatch to those of zirconia (10.0 to 10.5 x 106 per C).231 Since simple thermal expansion coefficient mismatch between bulk materials is not likely to induce tensile stresses that lead to porcelain chipping, it was presupposed that surface property changes may
be involved.273 Moreover, interfacial SEM analysis of the elemental composition and distribution failed to give an explanation of chemical bond since no transitional zone and/or distinct ionic presentations could be detected.232 Further \textit{in vitro} testing showed that fractures occurred adjacent to the interface but not into the veneering ceramic mass. However, a thin ceramic layer remained on the zirconia surface, indicating that bond strength was higher than the cohesive strength of the veneering ceramic. For this reason, it was assumed that bonding between veneering ceramics and zirconia might be based on chemical bonds.228 To date, there is no scientific evidence of chemical bonding between zirconia and veneering porcelains. The two materials seem to “bond” by mechanical interlocking and through development of compressive stresses due to thermal shrinkage during cooling after sintering.211

Another cause of chipping might be the lack of a uniform support of the veneering ceramic due to the framework design.28,233 The ceramic framework design is dependent mainly on the preparation depth, height of the abutment teeth, interdental space, and edentulous span length. Regarding all-ceramic FPDs, the shape of the pontic-connector interface seems to have an effect on fracture characteristics, stress distribution, and concentration inside a framework that may induce cracking of the veneering material.234 Framework designs for posterior implant restorations that curved in the occlusal direction may better withstand functional loading, however, framework design had no significant influence on initial fracture of veneering ceramic.235 In order to develop a framework that meets all the requirements of physiology, esthetics, and strength, current CAD-CAM systems provide sophisticated features to detect preparation margins, to direct positioning of connectors and pontics and to allow essential planning of both form and support. Most manufactures suggest that the minimum coping thickness should be 0.4 mm, that the minimum connector size should be 9.0 mm2, and that the framework must support the veneering porcelain, which should not include more than 2.0 mm of unsupported veneering material.223,234,236

Chipping or core fractures might furthermore be the result of differences in the modulus of elasticity within the tooth or implant abutment–cement framework and veneering material complex. Elastic property differences across these interfaces can lead to high interfacial stresses and ultimate failure.66 In general, the use of tougher core materials, such as zirconia, has been advocated to overcome this limitation and therefore improve clinical performance.237 Zirconia cores were found to be less susceptible to fracture than alumina and critical loads for veneering fracture were not significant, however, veneering fractures did depend on adhesive thickness.238 For this reason, a standardized thickness of cement space should be used throughout clinical (ie, appropriate tooth preparation)239 and laboratory procedures (ie, computer-aided cement space determination).33 Observed fractures of multi-unit prostheses (≥ 4) mostly involve the connectors or second molar abutments. In addition, molar zirconia crowns were found to be at least as good as alumina-based ones.4

Finally, the cost-effectiveness of CAD/CAM zirconia applications is an issue open for discussion, because of the need for initial hardware investments (ie, scan-
ners, computers, machines) and because of the increased final per unit cost. After zirconia technology enters routine clinical practice, dentists and dental technicians should cooperatively adopt new materials and methods to improve their performance according to current evidence-based data and manufacturers’ recommendations. Since zirconia technology is a relatively new area of dentistry, it might undergo evolutionary changes in the near future and consequently users and technical staff should also maintain significant continuing education and training.

At the conclusion of the present review, it is essential to underscore that zirconia technology is the most recent of the amazing advances in the CAD/CAM industry. Supporting technologies regarding digitalization, computers, and lasers will continue to revolutionize dentistry so that “virtual labs” might even replace traditional dental technology. Current clinical findings may provide a glimpse of research orientation and highlight future trends. Zirconia already has a past and an ambitious present however, for the fulfillment of the “dream,” all observed or future complications must be overcome through basic research and long-term clinical evaluation.

Conclusions

- Zirconia applications seem to consolidate a well-established position in clinical dentistry, due to the improvements in CAD/CAM technology and to the material’s exceptional physical properties.
- Existing clinical studies demonstrated a promising survival potential regarding tooth-supported restorations but also revealed significant complications such as high incidence of early fractures of either the veneering or the core materials. Longitudinal studies will help to determine the degree of clinical benefit or severity of complications.
- Zirconia abutments provide a favorable bio-esthetic addition to implant dentistry, however, long-term clinical assessment is needed for in-depth evaluation of implant-supported zirconia restorations and zirconia implants in particular.
- Basic research should be conducted in the fields of aging, veneering, framework design, bonding, surface modification and esthetic performance to further illuminate the observed complications and provide solutions that will accelerate expected clinical outcomes.

References

